Raman spectroscopy explores molecular structural signatures of hidden materials in depth: Universal Multiple Angle Raman Spectroscopy
نویسندگان
چکیده
Non-invasive 3D imaging in materials and medical research involves methodologies such as X-ray imaging, MRI, fluorescence and optical coherence tomography, NIR absorption imaging, etc., providing global morphological/density/absorption changes of the hidden components. However, molecular information of such buried materials has been elusive. In this article we demonstrate observation of molecular structural information of materials hidden/buried in depth using Raman scattering. Typically, Raman spectroscopic observations are made at fixed collection angles, such as, 90°, 135°, and 180°, except in spatially offset Raman scattering (SORS) (only back scattering based collection of photons) and transmission techniques. Such specific collection angles restrict the observations of Raman signals either from or near the surface of the materials. Universal Multiple Angle Raman Spectroscopy (UMARS) presented here employs the principle of (a) penetration depth of photons and then diffuse propagation through non-absorbing media by multiple scattering and (b) detection of signals from all the observable angles.
منابع مشابه
Spectroscopy, Structural, and Optical Investigations of NiFe2O4 Ferrite
Ni ferrite crystalline material is synthesized using a sol-gel method at two different temperatures. The vibrational and stretching modes, crystalline phase, size distribution and morphology of the products are investigated via Raman back-scattering and Fourier transform infrared (FTIR) spectroscopy, XRD and FESEM, respectively. Vibrational modes of spinel ferrite are observed at Raman and FTIR...
متن کاملHigh spectral specificity of local chemical components characterization with multichannel shift-excitation Raman spectroscopy
Raman spectroscopy has emerged as a promising tool for its noninvasive and nondestructive characterization of local chemical structures. However, spectrally overlapping components prevent the specific identification of hyperfine molecular information of different substances, because of limitations in the spectral resolving power. The challenge is to find a way of preserving scattered photons an...
متن کاملBiosensing Based on Surface-Enhanced Raman Spectroscopy by Using Metal Nanoparticles
Surface-enhanced Raman spectroscopy (SERS) is a promising tool in the analytical science because it provides good selectivity and sensitivity without the labeling process required by fluorescence detection. This technique consists of locating the target analyte on nanometer range of roughed Au-nanoparticles. The presence of the metal nanoparticles provides a tremendous enhancement to the result...
متن کاملAssessment of environmental high-doses using Raman spectroscopy of gamma irradiated MWCNT-OH Nanopowder utilized in radiation accidents
Introduction: The functionalized Multi-Walled Carbon Nanotube with hydroxyl group (MWCNT-OH) due to high aspect ratios (length to diameter), and also excellent mechanical, electrical and thermal characteristics, has great potential applications in flexible electronics, solar cells, antistatic devices, electromagnetic interference shielding, radiation shielding, electrode materi...
متن کاملLaser Micro-Raman Spectroscopy of CVD Nanocrystalline Diamond Thin Film
Laser micro-Raman spectroscopy is an ideal tool for assessment and characterization of various types of carbon-based materials. Due to its special optical properties (CrN) coated stainless steel substrates. NCD films have been investigated by laser micro-Raman spectroscopy. The fingerprint of diamond based materials is in the spectral region of 1000-1600 cm-1 in the first order of Raman scatter...
متن کامل